_
٩
⊂
α
\Box
Ν
0
α
;
_
₫
Ξ
≷
≷
≷
Ω
-
-
$\overline{}$

Title Introduction to computing	Code 1018011110108220254
Field Electronics and Telecommunications	Year / Semester 1 / 1
Specialty	Course
•	core
Hours	Number of credits
Lectures: 1 Classes: - Laboratory: 1 Projects / seminars: -	6
	Language
	polish

Lecturer:

dr inż. Mariusz Głąbowski

Katedra Sieci Telekomunikacyjnych i Komputerowych

tel. +48 61 665 3904

e-mail: mariusz.glabowski@et.put.poznan.pl

Faculty:

Faculty of Electronics and Telecommunications

ul. Piotrowo 3A 60-965 Poznań

tel. (061) 665-2293, fax. (061) 665-2572

e-mail: office det@put.poznan.pl

Status of the course in the study program:

Obligatory course for students of Electronics and Telecommunications, First year.

Assumptions and objectives of the course:

Introduction to computing and to methodologies and techniques of computer programming using C++

Contents of the course (course description):

Computer organization. Machine languages, assembly languages, and high-Level languages. Variables and memory concepts. Arithmetic and relational operators. Control structures. Repetition structures. Functions: definitions, prototypes, templates and overloading. Arrays. Sorting algorithms. Pointers. Structures. Classes. Objects. Friend functions and classes. Inheritance. Dynamic memory management. Dynamic data structures.

Introductory courses and the required pre-knowledge:

Courses form and teaching methods:

Lectures illustrated with computer presentations. Practical exercises in laboratories.

Form and terms of complete the course - requirements and assessment methods:

Individual projects, written exam

Basic Bibliography:

Additional Bibliography: